题目:求函数$f(x)=\frac {x^3+x}{x^4+6x^2+1}+1$的最大与最小值的乘积的值
解:原式可化为:$ f(x)=\frac {1}{x+\frac {1}{x}+\frac {4}{x+\frac {1}{x}} }+1$
考虑:$g(t) = t+\frac {4}{t} ( t\ne0 )$,
所以:$g(t ) \in(-\infty ,-4 ] \cup [4, +\infty) $ $\Rightarrow$ $f(x) \in (1 ,\frac {5}{4}] \cup [\frac {3}{4},1)$ |