题目:已知数{$a_n$},$a_1=a_2=1,且 a_{n+2} = a_{n+1} + a_n$, $S_n$为{$ \frac {a_n} {2^n}$}的前n项和,
求证: $S_n < 2$
证明:$\frac {a_{n+2}}{2^{n+2}}$ = $\frac 12 \frac {a_{n+1}}{2^{n+1}} + \frac 14 \frac {a_n}{2^n}$
$S_{n+2} - \frac {a_1}{2} - \frac {a_2}{4}$ = $\frac 12 ( S_{n+1} - \frac {a_1}{2}) + \frac 14 S_{n}$
$ S_{n+2} = \frac {1}{2} S_{n+1} +\frac {1}{4} S_n +\frac {1}{2} $
$ S _1= \frac {1}{2}$<2 , $ S _2=\frac {3}{4} < 2 $
假设:$ S_n<2, S_{n+1}<2 $
那么:$ S_{n+2} = \frac {1}{2} S_{n+1} +\frac {1}{4} S_n +\frac {1}{2} $ < $\frac 12 2 + \frac 14 2 +\frac 12 = 2$
由数学归纳法原理可知,$S_n < 2$ |